Forecasting Destination Weekly Hotel Occupancy with Big Data

Author:

Pan Bing12,Yang Yang3

Affiliation:

1. Department of Recreation, Park, and Tourism, College of Health and Human Development, Penn State University, University Park, PA, USA

2. School of Tourism and Environment Sciences, Shaanxi Normal University, Xi’an, China

3. School of Sport, Tourism and Hospitality Management, Temple University, Philadelphia, PA, USA

Abstract

Hospitality constituencies need accurate forecasting of future performance of hotels in specific destinations to benchmark their properties and better optimize operations. As competition increases, hotel managers have urgent need for accurate short-term forecasts. In this study, time-series models incorporating several tourism big data sources, including search engine queries, website traffic, and weekly weather information, are tested in order to construct an accurate forecasting model of weekly hotel occupancy for a destination. The results show the superiority of ARMAX models with both search engine queries and website traffic data in accurate forecasting. Also, the results suggest that weekly dummies are superior to Fourier terms in capturing the hotel seasonality. The limitations of the inclusion of multiple big data sources are noted since the reduction in forecasting error is minimal.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Tourism, Leisure and Hospitality Management,Transportation,Geography, Planning and Development

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3