Caffeic acid abrogates 1,3-dichloro-2-propanol-induced hepatotoxicity by upregulating nuclear erythroid-related factor 2 and downregulating nuclear factor-kappa B

Author:

Ajiboye TO1ORCID,Ajala-Lawal RA1,Adeyiga AB1

Affiliation:

1. Antioxidants, Redox Biology and Toxicology Research Laboratory, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, FCT-Abuja, Nigeria

Abstract

1,3-dichloro-2-propanol is a food-borne contaminant reported to cause liver injury. In this study, we evaluated the protective influence of caffeic acid on 1,3-dichloro-2-propanol-induced hepatotoxicity in rats. Rats were randomized into five groups (A–E). Rats received distilled water or caffeic acid (10 or 20 mg/kg body weight) for 7 days. In addition, rats were challenged with 1,3-dichloro-2-propanol on day 7. Caffeic acid prevented 1,3-dichloro-2-propanol-mediated alterations in alkaline phosphatase, alanine and aspartate aminotransferases, albumin and total bilirubin in the serum of rats. Furthermore, caffeic acid lowered superoxide ion, hydrogen peroxide and cytochrome P2E1 while increasing the activities of superoxide dismutase, catalase and glutathione S-transferase in the liver of 1,3-dichloro-2-propanol-treated rats. Caffeic acid raised the levels of nuclear erythroid-related factor 2 (Nrf-2), protein kinase A and phosphoinositide 3-kinase. Caffeic acid pretreatment annulled 1,3-dichloro-2-propanol-mediated alterations in the oxidative stress biomarkers; caspase-3, glutathione, malondialdehyde, protein carbonyl and fragmented DNA, in the liver of rats. Contrastingly, caffeic acid lowered 1,3-dichloro-2-propanol-mediated increase in the levels of nuclear factor-kappa B (NF-κB), tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6. In addition, caffeic acid preserved the morphological features of 1,3-dichloro-2-propanol-treated rats. Results from this study revealed that caffeic acid protects against 1,3-dichloro-2-propanol-induced hepatotoxicity by enhancing the cytoprotective enzymes through Nrf-2 while lowering inflammation through NF-κB.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3