Affiliation:
1. School of Automotive and Transportation Engineering, Hefei University of Technology, China
2. School of Mechanical Engineering, Hefei University, China
Abstract
Model predictive control is one of the main methods used in path tracking for autonomous vehicles. To improve the path tracking performance of the vehicle, a path tracking method based on model predictive control with variable predictive horizon is proposed in this paper. Based on the designed model predictive controller for path tracking, the response analysis of path tracking control system under the different predictive horizons is carried out to clarify the influence of predictive horizon on path tracking accuracy, driving comfort and real-time of the control algorithm. Then, taking the lateral offset, the steering frequency and the real-time of the control algorithm as comprehensive performance indexes, the particle swarm optimization algorithm is designed to realize the adaptive optimization for the predictive horizon. The effectiveness of the proposed method is evaluated via numerical simulation based on Simulink/CarSim and hardware-in-the-loop experiment on an autonomous driving simulator. The obtained results show that the optimized predictive horizon can adapt to the different driving environment, and the proposed path tracking method has good comprehensive performance in terms of path tracking accuracy of the vehicle, driving comfort and real-time.
Funder
National Natural Science Foundation of China
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献