Chattering-suppression sliding mode control of an autonomous underwater vehicle based on nonlinear disturbance observer and power function reaching law

Author:

Tang Qirong1,Li Yinghao1,Guo Ruiqin1,Jin Daopeng1,Hong Yang1,Huang Hai2ORCID

Affiliation:

1. Laboratory of Robotics and Multibody System, School of Mechanical Engineering, Tongji University, China

2. National Key Laboratory of Science and Technology on Underwater Vehicle, Harbin Engineering University, China

Abstract

To improve the performance of autonomous underwater vehicle in trajectory tracking control, which is subject to system uncertainties and time-varying external disturbances, a nonlinear disturbance observer-based sliding mode controller is proposed in the study. First, a reaching law with a special power function and a hyperbolic tangent function is presented. Then an improved sliding mode controller based on the new reaching law is combined to decrease the reaching time and avoid chattering during the trajectory tracking control. Furthermore, to reduce the influence of the system uncertainties and external disturbances, a nonlinear disturbance observer is introduced to identify them. The error asymptotic convergence of the trajectory tracking control is proved by the Lyapunov-like function. Finally, under different environmental disturbances, plenty of simulations are carried out to verify the efficiency and robustness of the proposed method. Results show that when it is tracking different trajectories, the proposed method can suppress the chattering and reduce the disturbances effectively, while ensuring tracking performance.

Funder

the Key Pre-Research Project of the 13th-Five-Year-Plan on Common Technology

the Key Pre-Research Project of the 13th-Five-Year-Plan on Field Fund

science and technology innovation plan of shanghai science and technology commission

the Fundamental Research Funds for the Central Universities and the Youth 1000 program project

national natural science foundation of china

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3