Disturbance-rejection position tracking control of industrial robots via a discrete-time super-twisting observer–based fast terminal sliding mode approach

Author:

Han Linyan12ORCID,Mao Jianliang23ORCID,Du Haibo4,Gan Yahui2,Li Shihua2ORCID

Affiliation:

1. School of Mechanical Engineering, University of Leeds, UK

2. School of Automation, Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of College of Automation Engineering, Shanghai University of Electric Power, PR China

3. School of Electrical Engineering and Automation, Hefei University of Technology, PRChina

4. Education, Southeast University, PR China

Abstract

Facing the system uncertainties caused by unmodeled dynamics and unpredictable external disturbances, the robot position control for meeting the high-performance control requirements on higher accuracy and faster beat is vital for many industrial applications, such as welding and laser cutting tasks. This work aims to cope with the problem of precise and fast position tracking for robot manipulators with an effective and safe control scheme. Specifically, a discrete-time super-twisting observer (STO) is integrated into the scheme to estimate the uncertain dynamics (e.g. unmodeled dynamics and external disturbances) in the feedforward compensation part of the dynamics. Subsequently, a discrete-time fast terminal sliding mode controller (FTSMC) dominates the robot control to guarantee fast convergence of the position tracking error. The significant improvement of the proposed method with respect to other discrete-time sliding mode control approaches lies in that it is capable of alleviating the chattering-like problem, achieving a fast convergence and improving the robustness of sliding mode control against uncertain dynamics. To illustrate the effectiveness of the presented control scheme, several experiments on a six degrees of freedom (6DoF) robot manipulator are provided.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

the Engineering and Physical Sciences Research Council

The Advanced Machinery and Productivity Institute

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3