ALTASN: A few-shot learning fault diagnosis method for rotating machinery of unmanned surface vehicles based on attention mechanism

Author:

Cao Yu1,Chen Yongyi1,Zhang Dan12ORCID,Abdulaal Mohammed2

Affiliation:

1. Department of Automation, Zhejiang University of Technology, China

2. Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Saudi Arabia

Abstract

Rotating machinery is one of the principal power equipment of unmanned surface vehicles (UVs). Considering the complex and harsh offshore working conditions of UVs, the health status of rotating machinery is highly to be affected, but it is often difficult to obtain enough fault samples. Accordingly, limited data fault diagnosis of rotating machinery holds great practical significance to increase the resilience and security of UVs. For limited data fault diagnosis, a novel few-shot learning model based on attention mechanism called adaptive long-term attention siamese network (ALTASN) is proposed. First, an efficient channel attention mechanism is combined with adaptive convolutional kernels to improve the spatial feature extraction capabilities of the convolutional neural network (CNN). To capture and assign higher weights to important long-term dependent information, long-term attention is introduced to improve the ability of long short-term memory networks (LSTM) temporal feature extraction. Finally, the siamese network is introduced to compare the features of different sample pairs to obtain the final fault type. In the case of limited data, the fault diagnosis performance and generalization ability of the proposed ALTASN are better compared with existing results. Experiments are carried out on the actual three-phase asynchronous motor experiment platform at the Zhejiang University of Technology to verify the effectiveness and generalization of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3