Affiliation:
1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China
Abstract
An accurate and high-efficiency contact model is essential for vehicle-track dynamic simulation and wear prediction. The paper attempts to assess the influence of different contact models on the offline and online simulation, as well as wear depth distribution. Taking CONTACT as the reference model, the computational accuracies of contact model combinations (i.e. Hertz + FASTSIM, Kik–Piotrowski (KP) + FASTSIM, modified Kik–Piotrowski (MKP) + FASTSIM and MKP + FaStrip) are evaluated. Typical wheel-rail contact cases and two dynamic simulation cases (track irregularity and curve track) have been studied. Results show that MKP + FaStrip achieves the best computational accuracy in calculating the typical wheel-rail contact situation, besides, the yaw angle has a significant influence on the contact patch shape and pressure distribution, especially when the wheel flange contacts with a rail corner. With regard to the vehicle passing the track with the lateral irregularity, both KP + FASTSIM and MKP + FaStrip models can achieve relatively good agreement on dynamic results and wear prediction with CONTACT. In terms of the curve track, MKP + FaStrip has better accuracy on dynamic results and wear due to a larger yaw angle.
Funder
Research on Wheel-rail Conformal Contact Modeling and Dynamic Mechanical Behavior of Interface when Train Passes Through Turnout
Research on the Evolution Mechanism of High-Speed Railway Rail Damage and Data-Driven Intelligent Operation and Maintenance
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献