A comparison of friction modifier performance using two laboratory test scales

Author:

Buckley-Johnstone L1,Harmon M2ORCID,Lewis R2,Hardwick C3,Stock R4

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. Centre for Doctoral Training in Integrated Tribology, University of Sheffield, Sheffield, UK

3. L.B. Foster Rail Technologies Ltd, Sheffield, UK

4. L.B. Foster Rail Technologies Ltd, Burnaby, Canada

Abstract

This paper describes two methods, carried out at two different test scales, for assessing the friction modifier performance. Study A used the wear data from a full-scale rig test at the voestalpine Schienen GmbH and compared it with the wear data from twin disc tests using the SUROS test machine at the University of Sheffield. Study B compared the ‘retentivity’ data, from a full-scale rig at the University of Sheffield, with the data from the SUROS tests. Study A concluded that a good correlation existed between the two scales although assumptions made in the full-scale contact calculation introduce a large spread into the results. There was a greater correlation between the two data sets at more severe contact conditions. Study B showed a different baseline coefficient of traction between the two scales and that a longer test length is required to fully evaluate the ‘retention’ of the friction modifier on the full-scale rig. The paper expands on a previous conference presentation on the same subject. Additional information on the test procedure and test rigs is included here. Surface and subsurface analyses of the SUROS test samples have also been added. The analyses have shown that applying the friction modifier leads to a similar wear mechanism as for the dry contact, but the wear is less severe and there is less subsurface deformation. A discussion describing the differences in test scales and comparing lab tests to field operation is also included.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3