Studying the transfer mechanisms of water based top-of-rail products in a wheel/rail interaction

Author:

Lee Zing Siang1ORCID,Trummer Gerald2,Harmon Matthew1,White Ben1ORCID,Six Klaus2ORCID,Lewis Roger1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK

2. Virtual Vehicle Research GmbH, Graz, Austria

Abstract

The railway industry uses top-of-rail products to control and manage the friction in the wheel/rail interface to help ensure efficient train operations and reduce wheel and rail damage. A product is typically applied from a wayside applicator that pumps a puddle onto the rail head where a passing wheel will pick it up and then transfer it down the track. The aim of this study was to study the transfer mechanisms of water-based top-of-rail friction modifiers (TOR-FMs) and how they are linked to the friction conditions in the wheel/rail interface. The transfer mechanisms were split into three parts: pick-up, carry-on and consumption. Pick-up looks at how the product transfers from the puddle on the rail to a wheel tread, whereas the carry-on mechanism relates to the product transfer back to the wheel. Consumption focuses on the removal rate of the product layer from the wheel or rail. A full-scale rig and twin disc machine were chosen to perform the tests because each rig could give different insights into understanding the product transfer mechanisms. Two products were tested of similar formulation. Results show that there are differences in the transfer and friction between the two products despite them being relatively similar. The test methods developed can clearly resolve differences between varying product types, which could be useful for product development studies or approvals work. The outcomes could also be used to develop a model of transfer/consumption.

Funder

Federal Railroad Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3