Condition-based monitoring system for rolling element bearing using a generic multi-layer perceptron

Author:

de Almeida Luis F1,Bizarria José WP1,Bizarria Francisco CP2,Mathias Mauro H3

Affiliation:

1. Department of Informatics, University of Taubate, Brazil

2. Department of Electrical Engineering, University of Taubate, Brazil

3. Faculty of Engineering, Sao Paulo State University, Brazil

Abstract

Rolling element bearings are critical mechanical components in rotating machinery and fault detection in the early stages of damage is important to prevent their malfunctioning and failure. Vibration monitoring is the most widely used and cost-effective monitoring technique to detect, locate and distinguish faults in rolling element bearings. This paper purposes single hidden layer architecture for fault diagnosis of rolling element bearings. The particular of this proposed architecture is its ability to generalize for solving both basic classification and fault identification. The network uses the features of time-domain vibration signals with normal and defective bearings. The Multi Layer Perceptron (MLP) was trained and tested with a set of experimental data obtained from previous experiments developed by FEG, CWRU and RANDALL laboratories. The results show the effectiveness of the MLP to diagnose the machine condition for the various data used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3