Convolutional-Transformer Model with Long-Range Temporal Dependencies for Bearing Fault Diagnosis Using Vibration Signals

Author:

Ahmed Hosameldin O. A.12,Nandi Asoke K.23ORCID

Affiliation:

1. OpenAITech Ltd., Old Marylebone, London NW1 5RA, UK

2. Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK

3. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Fault diagnosis of bearings in rotating machinery is a critical task. Vibration signals are a valuable source of information, but they can be complex and noisy. A transformer model can capture distant relationships, which makes it a promising solution for fault diagnosis. However, its application in this field has been limited. This study aims to contribute to this growing area of research by proposing a novel deep-learning architecture that combines the strengths of CNNs and transformer models for effective fault diagnosis in rotating machinery. Thus, it captures both local and long-range temporal dependencies in the vibration signals. The architecture starts with CNN-based feature extraction, followed by temporal relationship modelling using the transformer. The transformed features are used for classification. Experimental evaluations are conducted on two datasets with six and ten health conditions. In both case studies, the proposed model achieves high accuracy, precision, recall, F1-score, and specificity all above 99% using different training dataset sizes. The results demonstrate the effectiveness of the proposed method in diagnosing bearing faults. The convolutional-transformer model proves to be a promising approach for bearing fault diagnosis. The method shows great potential for improving the accuracy and efficiency of fault diagnosis in rotating machinery.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3