Fault Diagnosis of Unmanned Aerial Systems Using the Dempster–Shafer Evidence Theory

Author:

Liu Nikun1,Zhou Zhenfeng1,Zhu Lijun1,He Yixin12ORCID,Huang Fanghui123

Affiliation:

1. College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China

2. Jiaxing Key Laboratory of Smart Transportations, Jiaxing 314001, China

3. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Unmanned aerial systems (UASs) find diverse applications across military, civilian, and commercial sectors, including military reconnaissance, aerial photography, environmental monitoring, precision agriculture, logistics, and rescue operations, offering efficient, safe, and cost-effective solutions to various industries. To ensure the stable and reliable operation of UASs, fault diagnosis is essential, which can enhance safety, and minimize potential risks and losses. However, most existing fault diagnosis methods rely on a single physical quantity as the primary information source or solely consider fault data at a single moment, leading to challenges of low diagnostic accuracy and limited reliability. Aimed at this problem, this paper presents a fault diagnosis method based on time–space domain weighted information fusion for UASs. First, the Gaussian fault model is constructed for the data with different fault features in the space domain. Next, the weighted coefficient method is used to generate the basic probability assignment (BPA) by matching the fault data with the Gaussian fault model. Then, the Dempster’s combination rule, which enables the Dempster–Shafer (D-S) evidence theory, is adopted to fuse the generated BPAs. Based on this, the pignistic probability transformation is performed to determine the fault type. Finally, numerical results demonstrate the effectiveness of the proposed fault diagnosis method in accurately identifying the fault types of UASs.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Zhejiang Provincial Natural Science Foundation of China

University-Industry Collaborative Education Program

China National University Student Innovation & Entrepreneurship Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3