Enhanced Bearing Fault Diagnosis Through Trees Ensemble Method and Feature Importance Analysis

Author:

Alhams Amir,Abdelhadi Ahmed,Badri YousifORCID,Sassi Sadok,Renno Jamil

Abstract

Abstract Purpose This research introduces a groundbreaking method for bearing defect detection. It leverages ensemble machine learning (ML) models and conducts comprehensive feature importance analysis. The key innovation is the training and benchmarking of three tree ensemble models—Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—on an extensive experimental dataset (QU-DMBF) collected from bearing tests with seeded defects of varying sizes on the inner and outer raceways under different operating conditions. Method The dataset was meticulously prepared with categorical variable encoding and Min–Max data normalization to ensure consistent class distribution and model accuracy. Implementing the ML models involved a grid search method for hyperparameter tuning, focusing on reporting the models’ accuracy. The study also explores applying ensemble methods and using supervised and unsupervised learning algorithms for bearing fault detection. It underscores the value of feature importance analysis in understanding the contributions of specific inputs to the model’s performance. The research compares the ML models to traditional methods and discusses their potential for advanced fault diagnosis in bearing systems. Results and Conclusions The XGBoost model, trained on data from actual bearing tests, outperformed the others, achieving 92% accuracy in detecting bearing health and fault location. However, a deeper analysis of feature importance reveals that the models weigh certain experimental conditions differently—such as sensor location and motor speed. This research’s primary novelties and contributions are comparative evaluation, experimental validation, accuracy benchmarking, and interpretable feature importance analysis. This comprehensive methodology advances the bearing health monitoring field and has significant practical implications for condition-based maintenance, potentially leading to substantial cost savings and improved operational efficiency.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3