Designing nonlinear observer for topography estimation in trolling mode atomic force microscopy

Author:

Sajjadi Mohammadreza1ORCID,Chahari Mahmood2,Pishkenari Hossein Nejat3,Vossoughi Gholamreza2

Affiliation:

1. School of Mechanical Engineering, Shiraz University, Shiraz, Iran

2. Department of Mechanical engineering, Sharif University of Technology, Tehran, Iran

3. Nanorobotics laboratory, Department of Mechanical engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this study, a nonlinear observer for high-speed estimation of the sample surface topography in a small duration of the probe transient motion utilizing a 2DOF model of TR-AFM is proposed. Since the time duration to reach the steady-state periodic motion of the oscillating probe in conventional imaging methods is relatively high, the proposed nonlinear observer in this research is able to address this limitation and estimate the surface topography throughout transient oscillation of the microcantilever. With this aim, topography estimation process utilizing a Thau observer without any linearization of the system dynamics is designed and coupled with the system dynamics to achieve sample topography. The stability of the proposed observer coupled with controller is verified by the Lyapunov stability theorem for the first time, and hence, linearization of the model is not required. Simulation results demonstrate the feasibility of the presented approach to estimate different sample heights with high accuracy and a relatively high scanning speed. Additionally, the effects of measurement noise and horizontal nanoneedle tip displacement on the performance of proposed technique are investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3