Contact resonance atomic force microscopy using long elastic tips

Author:

Zimron-Politi NadavORCID,Tung Ryan CORCID

Abstract

Abstract In this work, a new theoretical model for contact resonance atomic force microscopy, which incorporates the elastic dynamics of a long sensing tip is presented. The model is based on the Euler–Bernoulli beam theory and includes coupling effects from the two-beam structure, also known as an ‘L-shaped’ beam in the literature. Here, high-accuracy prediction of the sample stiffness, using several vibration modes with a relative error smaller than 10% for practical working ranges, is demonstrated. A discussion on the model’s capability to predict the dynamic phenomena of eigenmode veering and crossing, as the force applied to the sample increases, is presented. The L-shaped beam model presented here is also applicable for structural applications such as: micro-electro-mechanical systems, energy harvesting, and unmanned aerial vehicle landing gear.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3