Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery

Author:

Ding Andy S.12ORCID,Lu Alexander12,Li Zhaoshuo3,Galaiya Deepa1,Siewerdsen Jeffrey H.23,Taylor Russell H.3,Creighton Francis X.1

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

2. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

3. Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA

Abstract

Objective This study investigates the accuracy of an automated method to rapidly segment relevant temporal bone anatomy from cone beam computed tomography (CT) images. Implementation of this segmentation pipeline has potential to improve surgical safety and decrease operative time by augmenting preoperative planning and interfacing with image-guided robotic surgical systems. Study Design Descriptive study of predicted segmentations. Setting Academic institution. Methods We have developed a computational pipeline based on the symmetric normalization registration method that predicts segmentations of anatomic structures in temporal bone CT scans using a labeled atlas. To evaluate accuracy, we created a data set by manually labeling relevant anatomic structures (eg, ossicles, labyrinth, facial nerve, external auditory canal, dura) for 16 deidentified high-resolution cone beam temporal bone CT images. Automated segmentations from this pipeline were compared against ground-truth manual segmentations by using modified Hausdorff distances and Dice scores. Runtimes were documented to determine the computational requirements of this method. Results Modified Hausdorff distances and Dice scores between predicted and ground-truth labels were as follows: malleus (0.100 ± 0.054 mm; Dice, 0.827 ± 0.068), incus (0.100 ± 0.033 mm; Dice, 0.837 ± 0.068), stapes (0.157 ± 0.048 mm; Dice, 0.358 ± 0.100), labyrinth (0.169 ± 0.100 mm; Dice, 0.838 ± 0.060), and facial nerve (0.522 ± 0.278 mm; Dice, 0.567 ± 0.130). A quad-core 16GB RAM workstation completed this segmentation pipeline in 10 minutes. Conclusions We demonstrated submillimeter accuracy for automated segmentation of temporal bone anatomy when compared against hand-segmented ground truth using our template registration pipeline. This method is not dependent on the training data volume that plagues many complex deep learning models. Favorable runtime and low computational requirements underscore this method’s translational potential.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3