Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining

Author:

Talla Gangadharudu1,Gangopadhyay Soumya1,Biswas CK1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India

Abstract

In recent times, nickel-based super alloys are widely utilized in aviation, processing, and marine industries owing to their supreme ability to retain the mechanical properties at elevated temperature in combination with remarkable resistance to corrosion. Some of the properties of these alloys such as low thermal conductivity, strain hardening tendency, chemical affinity, and presence of hard and abrasives phases in the microstructure render these materials very difficult-to-cut using conventional machining processes. In this work, an experimental setup was developed and integrated with the existing electrical discharge machining system for carrying out powder-mixed electrical discharge machining process for Inconel 625. The experiments were planned and conducted by varying five different variables, that is, powder concentration, peak current, pulse-on time, duty cycle, and gap voltage based on the central composite design of response surface methodology. Effects of these parameters along with powder concentration were investigated on various surface integrity aspects including surface morphology, surface roughness, surface microhardness, change in the composition of the machined surface, and residual stress. Results clearly indicated that addition of powder to dielectric has significantly improved surface integrity compared to pure dielectric. Among the powders used, silicon has resulted in highest microhardness, that is, almost 14% more than graphite. Lowest surface roughness (approximately 50% less than pure kerosene) and least residual stress were obtained using silicon powder (approximately 8% less than graphite-mixed dielectric). Relative content of nickel was reduced at the expense of Nb and Mo after addition of powders like aluminum and graphite in dielectric during electrical discharge machining.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3