Numerical simulation and experimentation to investigate the performance of powder mixed dielectric in electrical discharge micromachining

Author:

Singh Mahavir1ORCID,Jain Vijay Kumar1,Ramkumar Janakarajan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Abstract

In the current work, numerical simulation and experimentation are carried out to investigate the performance of powder mixed dielectric in the electrical discharge micromachining process. Three distinct powders, namely aluminum (electrically conductive), silicon (semi-conductive), and aluminum oxide/alumina (electrically non-conductive) dispersed in the kerosene dielectric, are considered. For a constant applied voltage, a silicon powder particle inserted in the gap immersed with liquid dielectric shows an enlargement in the inter-electrode gap (∼38% and 63% with circular and elliptical powder) compared to the pure dielectric. The enlarged inter-electrode gap increases the machining yield due to improved flushing efficiency. The intensification of the electric field near the particles’ surface lowers the breakdown voltage and charging time of the capacitor for the constant inter-electrode gap, resulting in a decrease in discharge energy per pulse and increased spark frequency. The influence of powder material properties and their sizes on breakdown strength is analyzed. Further, the discharge parameters acquired from the electric field numerical simulation of powder mixed dielectric have been utilized to conduct the numerical simulation of single crater formation with pure dielectric and powder mixed dielectric. The simulated single carters’ dimensions are validated with the experimentally machined single craters. Numerical simulation and experimentation of powder mixed dielectric depict the effectiveness of aluminum oxide powders in addition to silicon and aluminum powders when dispersed in kerosene host dielectric.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3