EFFECT OF PROCESS PARAMETERS ON THE PERFORMANCE OF POWDER MIXED EDM OF Ni-BASED SUPERALLOYS: A REVIEW

Author:

UDDIN MD PIYAR1ORCID,BARMA JOHN DEB1,MAJUMDER ARINDAM1

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology Agartala, Barjala, Jirania 799046, Tripura (W), India

Abstract

Ni-based superalloys fall under the category of difficulty in machining type material owing to their poor thermal conductivity and high strength at extreme temperatures. Machining such materials using the traditional approach is a tremendously difficult task. On the other hand, EDM, one of the most sophisticated electro-thermal manufacturing processes, is used to machine such materials. It is a well-known non-traditional machining process for generating parts that require accuracy, have complex shapes, and are small in size. However, the use of EDM in Ni-based superalloys has some disadvantages like poor surface finish and low material removal rate. So, to alleviate these disadvantages, researchers introduced powder mixed dielectric fluid in the EDM process. Further, the performance of this technique has been enhanced by studying the effect of various nano/micro-size particles and their concentrations in the dielectric medium. In this paper, the authors have reviewed the impact of non-electrical and electrical process parameters on the output responses when machining Ni-based superalloys using powder mixed EDM. The challenges faced during the conventional machining of Ni-based superalloys and the mechanism proposed for powder mixed EDM, especially under the influence of suspended powders into the dielectric medium have also been presented in this paper. Finally, future research areas of powder mixed EDM of Ni-based Superalloys, such as (i) its modelling and simulation and (ii) the effect of tool motion and powder properties on its performance, are discussed in brief.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3