Impedance control and parameter optimization of surface polishing robot based on reinforcement learning

Author:

Ding Yufeng1,Zhao JunChao1ORCID,Min Xinpu1

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Polishing robot is an automatic system in which the robot controls the end effector to fix the polishing tool and finish the workpiece polishing efficiently. In order to solve the problem of how to maintain the stability of actuator contact force in the robot automatic polishing system, a learning algorithm of robot impedance control parameters based on reinforcement learning is proposed and the impedance control model is established in this paper. The influence parameters (inertia M, damping B, stiffness K) of impedance performance are analyzed by numerical simulation method and the optimized impedance parameters are obtained at last. Due to the small number of iterations and high data utilization rate, reinforcement learning algorithm is more suitable for robot constant force tracking. In the process of applying reinforcement learning algorithm, a combination of dynamic matching method and linearization method is proposed to predict the output distribution of the state, which greatly improves the cost function of the evaluation strategy, and impedance parameters corresponding to the optimal strategy are obtained. Finally, steam turbine blade is taken as polishing test part. The average roughness of the selected points of test part after polishing is only 0.302μm, and much less than 1.151μm before polishing, which verifies the feasibility of the proposed impedance control method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3