Research and application on force control of industrial robot polishing concave curved surfaces

Author:

Ding Yufeng1,Min Xinpu1ORCID,Fu Weiwei1,Liang Zilong1

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan, China

Abstract

In order to improve the quality of the industrial robot automatic polishing on curved surfaces and ensure the constant polishing pressure during polishing process, a method for polishing complex concave cavity surfaces with industrial robot is proposed in this article. The method can achieve stable force control and precise position control and is easy to be realized online. In order to ensure the removal rate uniformity of surface material at different normal vectors, a method for adjusting the speed of motorized spindle in real time according to the surface normal vector is proposed. After planning the trajectory and normal vectors, combined with the feedback force signal from the sensor and the proportional–integral controller in the direction of the normal vector, the robot terminal tool corrects the trajectory in the direction of the surface normal vector, indirectly realizing force control between the tool and the surface. The robot polishing system with different polishing tools has different system stiffness. In order to ensure the polishing system with different stiffness to have a better tracking performance of the contact force, an adaptive proportional–integral control algorithm proposed in this article can be used to evaluate the stiffness of polishing system and to adjust proportional–integral parameters. The simulation and experimental results indicate that the method can realize the polishing of concave cavity surface commendably.

Funder

Science and Technology Support Program of Hubei Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3