Patient’s Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots

Author:

Guo Bingjing123ORCID,Li Zhenzhu1ORCID,Huang Mingxiang1,Li Xiangpan123,Han Jianhai123

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. Collaborative Innovation Center of Henan Province for High-End Bearing, Luoyang 471003, China

3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471000, China

Abstract

The implementation of a progressive rehabilitation training model to promote patients’ motivation efforts can greatly restore damaged central nervous system function in patients. Patients’ active engagement can be effectively stimulated by assist-as-needed (AAN) robot rehabilitation training. However, its application in robotic therapy has been hindered by a simple determination method of robot-assisted torque which focuses on the evaluation of only the affected limb’s movement ability. Moreover, the expected effect of assistance depends on the designer and deviates from the patient’s expectations, and its applicability to different patients is deficient. In this study, we propose a control method with personalized treatment features based on the idea of estimating and mapping the stiffness of the patient’s healthy limb. This control method comprises an interactive control module in the task-oriented space based on the quantitative evaluation of motion needs and an inner-loop position control module for the pneumatic swing cylinder in the joint space. An upper-limb endpoint stiffness estimation model was constructed, and a parameter identification algorithm was designed. The upper limb endpoint stiffness which characterizes the patient’s ability to complete training movements was obtained by collecting surface electromyographic (sEMG) signals and human–robot interaction forces during patient movement. Then, the motor needs of the affected limb when completing the same movement were quantified based on the performance of the healthy limb. A stiffness-mapping algorithm was designed to dynamically adjust the rehabilitation training trajectory and auxiliary force of the robot based on the actual movement ability of the affected limb, achieving AAN control. Experimental studies were conducted on a self-developed pneumatic upper limb rehabilitation robot, and the results showed that the proposed AAN control method could effectively estimate the patient’s movement needs and achieve progressive rehabilitation training. This rehabilitation training robot that simulates the movement characteristics of the patient’s healthy limb drives the affected limb, making the intensity of the rehabilitation training task more in line with the patient’s pre-morbid limb-use habits and also beneficial for the consistency of bilateral limb movements.

Funder

Project of science and technology of the Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3