An Admittance Parameter Optimization Method Based on Reinforcement Learning for Robot Force Control

Author:

Hu Xiaoyi1ORCID,Liu Gongping2,Ren Peipei2,Jia Bing1,Liang Yiwen1,Li Longxi1,Duan Shilin3

Affiliation:

1. College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. Avic Xi’an Aircraft Industry Group Co., Ltd., Xi’an 710089, China

3. Sichuan Huachuan Industry Co., Ltd., Chengdu 610100, China

Abstract

When a robot performs tasks such as assembly or human–robot interaction, it is inevitable for it to collide with the unknown environment, resulting in potential safety hazards. In order to improve the compliance of robots to cope with unknown environments and enhance their intelligence in contact force-sensitive tasks, this paper proposes an improved admittance force control method, which combines classical adaptive control and machine learning methods to make them use their respective advantages in different stages of training and, ultimately, achieve better performance. In addition, this paper proposes an improved Deep Deterministic Policy Gradient (DDPG)-based optimizer, which is combined with the Gaussian process (GP) model to optimize the admittance parameters. In order to verify the feasibility of the algorithm, simulations and experiments are carried out in MATLAB and on a UR10e robot, respectively. The experimental results show that the algorithm improves the convergence speed by 33% in comparison to the general model-free learning method, and has better control performance and robustness. Finally, the adjustment time required by the algorithm is 44% shorter than that of classical adaptive admittance control.

Funder

Equipment Development Department of People’s Republic of China Central Military Commission

Department of Science and Technology of Jilin Province Key R&D Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3