An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and Long Short-Term Memory network

Author:

Guo Weicheng1,Li Beizhi1ORCID,Zhou Qinzhi1

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai, China

Abstract

Grinding wheel condition is considered as the key factor affecting grinding performance, and therefore, accurate monitoring of wheel wear is necessary to prevent the deterioration of part quality. An intelligent wheel wear monitoring system is introduced in this article to realize processing of grinding signal, extraction of signal features, selection of optimal feature subset, and prediction of wheel wear. Physical information generated during the grinding of C-250 maraging steel is collected by a dynamometer, accelerometer, and acoustic emission sensor, and a large quantity of features in time domain and frequency domain are extracted from the processed grinding signals. To reduce feature redundancy and increase relevancy of feature to wheel wear, a two-stage feature selection approach combining filter and wrapper framework is proposed. The filter preselects individual features by minimum Redundancy Maximum Relevance method, while the wrapper evaluates different feature subsets by the model performance. A deep learning network structure named Long Short-Term Memory network is adopted to develop the wheel wear monitoring model and is compared with a conventional machine learning algorithm, Random Forest. The results have shown that the two-stage feature selection method is able to provide the globally optimal feature subset for the model. Long Short-Term Memory model achieves an R2 of 0.994 and a root-mean-square error of 0.240 with four features, while Random Forest model obtains an R2 of 0.980 and a root-mean-square error of 0.463 with seven features, which indicates that Long Short-Term Memory model is capable of predicting wheel wear more accurately even with less features.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress on intelligent monitoring of tool condition based on deep learning;The International Journal of Advanced Manufacturing Technology;2024-08-20

2. Condition monitoring of grinding wheels: Potential of internal control signals;Production Engineering;2024-06-20

3. A multi-sensor monitoring methodology for grinding wheel wear evaluation based on INFO-SVM;Mechanical Systems and Signal Processing;2024-02

4. Tool condition monitoring of diamond-coated burrs with acoustic emission utilising machine learning methods;The International Journal of Advanced Manufacturing Technology;2023-12-07

5. Accounting Intelligent Monitoring System Based on Data Analysis Algorithm;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3