Tool condition monitoring of diamond-coated burrs with acoustic emission utilising machine learning methods

Author:

Jessel ThomasORCID,Byrne Carl,Eaton Mark,Merrifield Ben,Harris Stuart,Pullin Rhys

Abstract

AbstractWithin manufacturing there is a growing need for autonomous Tool Condition Monitoring (TCM) systems, with the ability to predict tool wear and failure. This need is increased, when using specialised tools such as Diamond-Coated Burrs (DCBs), in which the random nature of the tool and inconsistent manufacturing methods create large variance in tool life. This unpredictable nature leads to a significant fraction of a DCB tool’s life being underutilised due to premature replacement. Acoustic Emission (AE) in conjunction with Machine Learning (ML) models presents a possible on-machine monitoring technique which could be used as a prediction method for DCB wear. Four wear life tests were conducted with a $$\varnothing $$ 1.3 mm #1000 DCB until failure, in which AE was continuously acquired during grinding passes, followed by surface measurements of the DCB. Three ML model architectures were trained on AE features to predict DCB mean radius, an indicator of overall tool wear. All architectures showed potential of learning from the dataset, with Long Short-Term Memory (LSTM) models performing the best, resulting in prediction error of MSE = 0.559 $$\mu $$ μ m$$^{2}$$ 2 after optimisation. Additionally, links between AE kurtosis and the tool’s run-out/form error were identified during an initial review of the data, showing potential for future work to focus on grinding effectiveness as well as overall wear. This paper has shown that AE contains sufficient information to enable on-machine monitoring of DCBs during the grinding process. ML models have been shown to be sufficiently precise in predicting overall DCB wear and have the potential of interpreting grinding condition.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3