Research progress on intelligent monitoring of tool condition based on deep learning

Author:

Cao Dahu,Liu WeiORCID,Ge Jimin,Du Shishuai,Liu Wang,Deng Zhaohui,Chen Jia

Funder

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Open Foundation of Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material

Publisher

Springer Science and Business Media LLC

Reference123 articles.

1. Di ZJ, Yuan DF, Li DY, Liang DJ, Zhou XT, Xin MM, Cao F, Lei TF (2022) Tool fault diagnosis method based on multiscale-efficient channel attention network. Journal of Mechanical Engineering 58: 1–9. http://kns.cnki.net/kcms/detail/11.2187.TH.20220414.0947.002.html

2. Cheng YN, Gai XY, Guan R, Jin YB, Lu MD, Ding Y (2023) Tool wear intelligent monitoring techniques in cutting: a review. J Mech Sci Technol 37(1):289–303. https://doi.org/10.1007/s12206-022-1229-9

3. Zhu KP, Guo H, Li S, Lin X (2023) Online tool wear monitoring by super-resolution based machine vision. Comput Ind 144:103782. https://doi.org/10.1016/j.compind.2022.103782

4. Caggiano A (2018) Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors 18(3):823. https://doi.org/10.3390/s18030823

5. Fu P, Hope AD, King G (1998) Intelligent tool condition monitoring in milling operation. and O, p 413

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3