Grinding temperature and wheel wear of porous metal-bonded cubic boron nitride superabrasive wheels in high-efficiency deep grinding

Author:

Li Zheng1,Ding Wen-Feng1,Ma Chang-Yu1,Xu Jiu-Hua1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China

Abstract

High-efficiency deep grinding experiments of Inconel 718 nickel-based superalloy was carried out with the porous metal-bonded cubic boron nitride superabrasive wheel, in which the uniform and large pores were formed by the broken alumina bubble particles in the working layer after wheel dressing. Grinding temperature, energy partitioning into workpiece, and wheel wear were investigated. Results obtained show that long maintenance of low grinding temperature, that is, 50 °C–170 °C, is obtained in high-efficiency deep grinding with the porous metal-bonded cubic boron nitride wheel. The energy partitioning into the ground workpiece is ranged from 2% to 6%, which is smaller than that with the conventional vitrified cubic boron nitride wheels and alumina abrasive wheels. Sufficient storage space for chips and coolants contributes to the excellent performance of the porous metal-bonded cubic boron nitride wheel in high-efficiency deep grinding. Abrasion wear and grain fracture are the dominant wear patterns of the porous cubic boron nitride wheel in the steady wear stage, while chips loading and grain pullout play a critical role in the final dramatic wear behavior of the porous wheel.

Funder

Science and Technology Supporting Program of Jiangsu Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3