The obstacle-surmounting analysis of a pole-climbing robot

Author:

Qiaoling Du1ORCID,Xinpo Lu1,Yankai Wang1,Sinan Liu1

Affiliation:

1. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, China

Abstract

Surmounting obstacles during continuously climbing in a complex environment is an important issue for pole-climbing robots. An obstacle-surmounting strategy is presented for a pole-climbing robot. The force and moment applied on the pole-climbing robot in static status were analyzed, and the analysis of pole-climbing robot’s upward vertical climbing was conducted. The climbing execution has four steps: loosening the lower gripper, curling up, striding forward, and clamping the upper gripper. To obtain the information of obstacle crossing accurately, the obstacle-surmounting conditions were analyzed in detail. We modeled the striding linkage with thickness and obtained the Denavit–Hartenberg coordinates of each vertex. The model of the grippers with thickness was proposed and the Denavit–Hartenberg coordinates of each vertex of the grippers were obtained. Then single-step negotiating an obstacle and multistep negotiating an obstacle were proposed. Experiments were conducted to verify the effectiveness of the obstacle-surmounting strategy.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a Biped Climbing Robot: Simulation, Comparison and Implementation;Manufacturing Technology;2023-12-22

2. Design of a Double Claw Pole-Climbing Robot;2023 China Automation Congress (CAC);2023-11-17

3. Review of key technologies of climbing robots;Frontiers of Mechanical Engineering;2023-11-10

4. Climbing robot based on triangle wheels obstacle crossing design: modeling simulation and motion analysis;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-09-24

5. Design and Development of a Pipe Climbing Mechanism;2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3