A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications

Author:

Liu Bin12,Sha Liansen2ORCID,Huang Kun2,Zhang Wenbin1,Yang Hongbo12

Affiliation:

1. School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, Jiangsu, China

Abstract

Topology optimization is an effective method for the lightweight of collaborative robots. The extreme working conditions of the robot for the existing topology optimization approach are usually determined by design experience, which may cause mismatch between the chosen load boundary condition of the parts to be optimized and the actual maximum one. In this article, a kind of topology optimization method based on orthogonal experiment was proposed to avoid this mismatch. For this method, the extreme working condition of robots was determined by finding out the combination of robot joint angles when the stress of the part was maximum based on orthogonal experiment. And then, the structure of the part was optimized with the objective of minimizing mass and the constraint of the maximum end displacement of the robots. Finally, the proposed method and the existing method were applied to the lightweight design of a 7 degree of freedom upper limb powered exoskeleton robot, and the results demonstrated that the presented approach can reduce 6.78% maximum end displacement of the robot on average compared with the existing one. It can be concluded that the proposed method in this article is more reasonable and applicable to the structure optimization of collaborative robots.

Funder

Science and Technology Plan of Jiangsu Province

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3