A new fuzzy time-delay control for cable-driven robot

Author:

Jiang Surong1,Wang Yaoyao1ORCID,Ju Feng12,Chen Bai1ORCID,Wu Hongtao1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China

Abstract

To overcome the problems of structural parametric uncertainty and cable transmission model complexity, a nonlinear controller based on time-delay estimation and fuzzy self-tuning is proposed. The unknown dynamics and disturbances are estimated by time delaying the state of motion immediately before. The control gains are self-tuned by a fuzzy controller, which can reduce the errors caused by system’s uncertainties and external disturbances. Compared with the conventional Proportional-derivative (PD) and time-delay control, the result shows that the proposed control scheme based on time-delay estimation can improve the joint trajectory tracking accuracy of cable-driven robot by significantly reducing the control gains. With the PD gains self-tuned by fuzzy strategy, the mean square errors of trajectory tracking are decreased approximately by 5–20% more than the conventional time-delay control with constant gains. In addition, the experimental result shows that the proposed method has an effective inhibitory effect on dead zone in cable-driven joints. Experiment performed on position tracking control of a 2-degree-of-freedom cable-driven robot is presented to illustrate that the controller has the advantages of simple and reliable structure, model-free, strong robustness, and high tracking accuracy.

Funder

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3