A Comparison of Priors When Using Bayesian Regression to Estimate Oral Reading Fluency Slopes

Author:

Solomon Benjamin G.1ORCID,Forsberg Ole J.2ORCID,Thomas Monelle1,Penna Brittney3,Weisheit Katherine M.1

Affiliation:

1. University at Albany, State University of New York, USA

2. Knox College, Galesburg, IL, USA

3. Siena College, Loudonville, NY, USA

Abstract

Bayesian regression has emerged as a viable alternative for the estimation of curriculum-based measurement (CBM) growth slopes. Preliminary findings suggest such methods may yield improved efficiency relative to other linear estimators and can be embedded into data management programs for high-frequency use. However, additional research is needed, as Bayesian estimators require multiple specifications of the prior distributions. The current study evaluates the accuracy of several combinations of prior values, including three distributions of the residuals, two values of the expected growth rate, and three possible values for the precision of slope when using Bayesian simple linear regression to estimate fluency growth slopes for reading CBM. We also included traditional ordinary least squares (OLS) as a baseline contrast. Findings suggest that the prior specification for the residual distribution had, on average, a trivial effect on the accuracy of the slope. However, specifications for growth rate and precision of slope were influential, and virtually all variants of Bayesian regression evaluated were superior to OLS. Converging evidence from both simulated and observed data now suggests Bayesian methods outperform OLS for estimating CBM growth slopes and should be strongly considered in research and practice.

Publisher

SAGE Publications

Subject

General Health Professions,Developmental and Educational Psychology,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3