Curriculum-Based Measurement of Reading: An Evaluation of Frequentist and Bayesian Methods to Model Progress Monitoring Data

Author:

Christ Theodore J.1,Desjardins Christopher David1

Affiliation:

1. University of Minnesota, Minneapolis, MN, USA

Abstract

Curriculum-Based Measurement of Oral Reading (CBM-R) is often used to monitor student progress and guide educational decisions. Ordinary least squares regression (OLSR) is the most widely used method to estimate the slope, or rate of improvement (ROI), even though published research demonstrates OLSR’s lack of validity and reliability, and imprecision of ROI estimates, especially after brief duration of monitoring (6-10 weeks). This study illustrates and examines the use of Bayesian methods to estimate ROI. Conditions included four progress monitoring durations (6, 8, 10, and 30 weeks), two schedules of data collection (weekly, biweekly), and two ROI growth distributions that broadly corresponded with ROIs for general and special education populations. A Bayesian approach with alternate prior distributions for the ROIs is presented and explored. Results demonstrate that Bayesian estimates of ROI were more precise than OLSR with comparable reliabilities, and Bayesian estimates were consistently within the plausible range of ROIs in contrast to OLSR, which often provided unrealistic estimates. Results also showcase the influence the priors had estimated ROIs and the potential dangers of prior distribution misspecification.

Publisher

SAGE Publications

Subject

General Psychology,Clinical Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3