Affiliation:
1. University of Minnesota, Minneapolis, MN, USA
Abstract
Curriculum-Based Measurement of Oral Reading (CBM-R) is often used to monitor student progress and guide educational decisions. Ordinary least squares regression (OLSR) is the most widely used method to estimate the slope, or rate of improvement (ROI), even though published research demonstrates OLSR’s lack of validity and reliability, and imprecision of ROI estimates, especially after brief duration of monitoring (6-10 weeks). This study illustrates and examines the use of Bayesian methods to estimate ROI. Conditions included four progress monitoring durations (6, 8, 10, and 30 weeks), two schedules of data collection (weekly, biweekly), and two ROI growth distributions that broadly corresponded with ROIs for general and special education populations. A Bayesian approach with alternate prior distributions for the ROIs is presented and explored. Results demonstrate that Bayesian estimates of ROI were more precise than OLSR with comparable reliabilities, and Bayesian estimates were consistently within the plausible range of ROIs in contrast to OLSR, which often provided unrealistic estimates. Results also showcase the influence the priors had estimated ROIs and the potential dangers of prior distribution misspecification.
Subject
General Psychology,Clinical Psychology,Education
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献