Mobile Learning New Trends in Emerging Computing Paradigms: An Analytical Approach Seeking Performance Efficiency

Author:

Mohiuddin Khalid1ORCID,Miladi Mohamed Nadhmi1ORCID,Ali Khan Mohiuddin2ORCID,Khaleel Mohammad Abdul3ORCID,Ali Khan Sajid3ORCID,Shahwar Samreen1ORCID,Nasr Osman A.1ORCID,Aminul Islam Mohammad1ORCID

Affiliation:

1. Department of Management Information Systems, College of Business King Khalid University, Saudi Arabia

2. Department of Computer & Network Engineering, College of Computer Science & IT Jazan University, Saudi Arabia

3. Department of Computer Science, College of Computer Science King Khalid University, Saudi Arabia

Abstract

Mobile learning (m-learning) adoption has increased and shall be demonstrated superior performance by implementing related computing paradigms, such as IoT, edge, mobile edge, fog, AI, and 5G. Mobile cloud architectures (MCAs) enable m-learning with several benefits and face limitations while executing real-time applications. This study investigates the state-of-the-art m-learning architectures, determines a layered m-learning-MCA obtaining numerous benefits of related computing paradigms, and expands m-learning functional structure. It evaluates m-learning performance across the four physical layer’s MCAs—distance cloud, cloudlet, operator-centric cloud, ad hoc cloud, and emerging computing architectures. Surprisingly, only distance-cloud MCA is adopted for developing m-learning systems by ignoring the other three. Performance evaluation shows m-learning gets terrific benefits and users QoE in related computing paradigms. Mobile edge computing offers ultralow latency, whereas the current architecture improves task execution time (1.87, 2.01, 2.63, and 3.97) for the resource-intensive application (i.e., 4.2 MB). Fog using AI algorithms is exceptional for more complex learning objects, IoT is superior for intelligent learning tools, and 5G ultrawideband services are more significant for intelligent video analytics. These findings help learners, educators, and institutions adopt an appropriate model for achieving their academic objectives across educational disciplines. The presented approach enables future research to design innovative architectures considering resource-intensive m-learning application execution requirements, such as video content analytics and virtual reality learning models.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3