Virtual 2D angiography from four-dimensional digital subtraction angiography (4D-DSA): A feasibility study

Author:

Yu Jay F1ORCID,Pung Leland2,Minami Hataka2,Mueller Kerstin2,Khangura Rajkamal1,Darflinger Robert1,Hetts Steven W1ORCID,Cooke Daniel L1

Affiliation:

1. Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA

2. Siemens Medical Solutions Inc., Malvern, PA, USA

Abstract

Background Digital subtraction angiography (DSA) remains the gold standard for angiographic evaluation of cerebrovascular pathology, however, multiple acquisitions requiring additional time and radiation are often needed. In contrast, 3D-DSA provides volumetric information from a single injection but neglects temporal information. Four-dimensional-DSA (4D-DSA) combines temporal information of 2D-DSA with volumetric information of 3D-DSA to provide time-resolved tomographic 3D reconstructions, potentially reducing procedure time and radiation. This work evaluates the diagnostic quality of virtual single-frame 4D-DSA relative to 2D-DSA images by assessing clinicians’ ability to evaluate cerebrovascular pathology. Methods Single-frame images of four projections from 4D-DSA and their corresponding 2D-DSA images (n = 15) were rated by two neurointerventional radiologists. Images were graded based on diagnostic quality (0 = non-diagnostic, 1 = poor, 2 = acceptable, 3 = good). Dose area product (DAP) for each case was recorded for all 2D-DSA, 4D-DSA acquisitions, and the overall procedure. Results The mean diagnostic quality of all four 4D-DSA projections from both raters was 1.75 while the mean of 2D-DSA projections was 2.8. Student’s t-test revealed significant difference in diagnostic quality between 4D-DSA and 2D-DSA at all four projections (p < 0.001). On average 4D-DSA acquisitions accounted for 30% dose compared to the overall average aggregated dose per procedure. Conclusions The difference in image quality between virtual single-frame 4D-DSA and their respective 2D-DSA images is statistically significant. Furthermore, 4D-DSA acquisitions require less radiation dose than conventional procedures with 2D-DSA acquisitions.

Publisher

SAGE Publications

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3