4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study

Author:

Sandoval-Garcia Carolina,Royalty Kevin,Yang Pengfei,Niemann David,Ahmed Azam,Aagaard-Kienitz Beverly,Başkaya Mustafa K,Schafer Sebastian,Strother Charles

Abstract

BackgroundThe angioarchitectural features of an arteriovenous malformation (AVM) provide key information regarding natural history and treatment planning. Because of rapid filling and vascular overlap, two-dimensional (2D) and three-dimensional (3D) digital subtraction angiography (DSA) are often suboptimal for evaluation of these features. We have developed an algorithm that derives a series of fully time-resolved 3D DSA volumes (four-dimensional (4D) DSA) at up to 30 frames/s from a conventional 3D DSA. The temporal/spatial resolution of 4D reconstructions is significantly higher than that provided by current MR angiography and CT angiography techniques. 4D reconstruction allows viewing of an AVM from any angle at any time during its opacification. This feasibility study investigated the potential of 4D DSA to improve the ability to analyze angioarchitectural features compared with conventional 2D and 3D DSA.Methods2D, 3D, and 4D DSA reconstructions of angiographic studies of six AVMs were evaluated by three cerebrovascular neurosurgeons and one interventional neuroradiologist. These observers evaluated the ability of each modality to visualize the angioarchitectural features of the AVMs. They also compared the information provided using the combination of 2D and 3D DSA with that provided by a 4D DSA reconstruction.ResultsBy consensus, 4D DSA provided the best ability to visualize the internal features of the AVM including intranidal aneurysms, fistulae, venous obstructions, and sequence of filling and draining. 2D and 3D images in comparison were limited because of overlap of the vasculature.ConclusionsIn this small series, 4D DSA provided better ability to visualize the angioarchitecture of an AVM than conventional methods. Further experience is required to determine the ultimate utility of this technique.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3