Recognition and 3D Visualization of Human Body Parts and Bone Areas Using CT Images

Author:

Nguyen Hai Thanh1ORCID,Nguyen My N.12,Nguyen Bang Anh1,Nguyen Linh Chi1,Phung Linh Duong3

Affiliation:

1. 1 College of Information and Communication Technology , Can Tho University , Can Tho , Vietnam

2. 2 Kyoto Institute of Technology , Kyoto , Japan

3. 3 College of Information Science and Engineering , Ritsumeikan University , Kyoto , Japan

Abstract

Abstract The advent of medical imaging significantly assisted in disease diagnosis and treatment. This study introduces to a framework for detecting several human body parts in Computerised Tomography (CT) images formatted in DICOM files. In addition, the method can highlight the bone areas inside CT images and transform 2D slices into a visual 3D model to illustrate the structure of human body parts. Firstly, we leveraged shallow convolutional Neural Networks to classify body parts and detect bone areas in each part. Then, Grad-CAM was applied to highlight the bone areas. Finally, Insight and Visualization libraries were utilized to visualize slides in 3D of a body part. As a result, the classifiers achieved 98 % in F1-score in the classification of human body parts on a CT image dataset, including 1234 slides capturing body parts from a woman for the training phase and 1245 images from a male for testing. In addition, distinguishing between bone and non-bone images can reach 97 % in F1-score on the dataset generated by setting a threshold value to reveal bone areas in CT images. Moreover, the Grad-CAM-based approach can provide clear, accurate visualizations with segmented bones in the image. Also, we successfully converted 2D slice images of a body part into a lively 3D model that provided a more intuitive view from any angle. The proposed approach is expected to provide an interesting visual tool for supporting doctors in medical image-based disease diagnosis.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3