Culture Supernatant of Lactobacillus acidophilus Stimulates Proliferation of Embryonic Cells

Author:

Li W. I.1,Brackett Benjamin G.1,Halper Jaroslava2

Affiliation:

1. Department of Physiology and Pharmacology

2. Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602

Abstract

Our previous report showed that supernatants of Lactobacillus acidophilus (LS) cultures possessed chemotactic and angiogenic properties. Specifically, LS stimulated gene expression and the secretion of tumor necrosis factor-α (TNF-α), the proliferation of immune cells in vitro, and blood vessel formation. Chemotaxis and proliferation of inflammatory cells in vivo were also stimulated by LS. In the current study, we hypothesized that LS stimulates the growth and development of other rapidly dividing cells, including embryonic cells. The stimulatory effects of LS on a neuroblastoma cell line (Neuro-2a), chicken embryos, and bovine embryos were examined. The addition of LS to Neuro-2a cultures caused a proliferation of cells in a concentration-dependent manner. Pretreatment of LS at 56°C for 30 mins did not affect its stimulatory activity. The administration of LS to the chorioallantoic membrane (CAM) of chicken-embryonated eggs for 1-2 days resulted in extensive thickening of the membrane. The thickening was due to the influx and proliferation of fibroblasts and inflammatory cells, the accumulation of loose connective tissue composed primarily of mucopolysaccharides, and/or the formation of blood vessels. Stimulatory effects of LS on bovine embryos were also observed. The treatment with LS significantly promoted the development of zygotes to the four-cell stage and from the four-cell stage to blastocysts. These results have confirmed our hypothesis that LS exerts a stimulatory effect on the cells of embryonic stages including neuroblastoma cells, the CAM of chicken embryos, and bovine embryos from zygotes to blastocysts.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3