Adverse loading effects on tribocorrosive degradation of 28 mm metal-on-metal hip replacement bearings

Author:

Beadling Andrew R1ORCID,Bryant Michael G.1,Dowson Duncan1,Neville Anne1

Affiliation:

1. University of Leeds, Institute of Functional Surfaces, Leeds, UK

Abstract

Following the high clinical failure rates of metal-on-metal total hip replacements much work has been undertaken to investigate their poor performance. So called adverse loading scenarios such as acetabular inclination and microseparation have been attributed to indicators for failure of the implants. The ISO hip simulation standards (ISO 14242:1) still rely on gravimetric and ex situ analysis, considering only the total wear during articulation. Live in situ sensing can provide valuable insight into the degradation mechanisms of metallic interfaces under such scenarios. Clinical 28 mm diameter metal-on-metal components were articulated in a full-ISO hip simulator. The bearings were subjected to increasing angles of acetabular inclination and retroversion over short-term periods of articulation. Corrosive degradation was monitored during sliding by means of an in situ three-electrode cell. Changing acetabular inclination from 30° to 50° resulted in greater cathodic shifts in OCP upon the initiation of sliding; from −50 mV to as much as −150 mV. Under anodic polarisation (0 mV vs. Ag/AgCl) the resultant currents at the initiation of sliding also increased significantly with inclination; from approximately 4–10 µA to over 120 µA. Increased retroversion of 20° also resulted in increased anodic currents of 55–60 µA. Changing the nature of articulation demonstrated increased corrosive material loss compared to a standard ISO 14242 profile. The sole use of gravimetric assessment to determine a wear rate for hip replacement bearings under simulation can therefore neglect important degradation mechanisms, such as tribocorrosive loss in devices with metal sliding interfaces.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3