A preliminary experimental investigation on the biotribocorrosion of a metal-on-polyethylene hip prosthesis in a hip simulator

Author:

Yang Shu,Pu Jian,Zhang Xiaogang,Zhang Yali,Cui Wen,Xie Fengbao,Lu Weiping,Tan Qin,Jin Zhongmin

Abstract

AbstractCorrosion at the taper/trunnion interface of total hip replacement (THR) often results in severe complications. However, the underlying mechanisms of biotribocorrosion at the taper/trunnion interface during the long-term walking gait cycles remain to be fully understood. In this study, a hip joint simulator was therefore instrumented with an electrochemical cell for in-situ monitoring of the tribocorrosion evolution in a metal-on-polyethylene (MoP) THR during a typical long-term walking gait. In addition, the biotribocorrosion mechanism was investigated via surface and chemical characterizations. The experimental results confirmed that the taper/trunnion interface dominated the contemporary MoP hip joint corrosion. Three cyclic variations in the open circuit potential (OCP) were observed throughout the long-term electrochemical measurements, attributed to the formation and disruption of the adsorbed protein layer. The corrosion exhibited an initial increase at each period, peaking at approximately 0.125 million cycles, followed by a subsequent gradual reduction. Surface and chemical analyses revealed the formation of a tribochemical reaction layer (tribolayer) on the worn surface of the taper/trunnion interface. The surface/chemical characterizations and the electrochemical measurements indicated that the adhesion force of the adsorbed protein layer was weaker than that of the tribolayer. In contrast, the opposite was true for the corrosion resistance. Based on the observations from this study, the tribocorrosion mechanism of the taper/trunnion interface under the long-term walking gait cycles is deduced.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3