Bridge inspection component registration for damage evolution

Author:

Bianchi Eric L1ORCID,Sakib Nazmus2,Woolsey Craig2,Hebdon Matthew3

Affiliation:

1. Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

2. Crofton Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

3. Civil and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA

Abstract

There have been great advances in bridge inspection damage detection involving the use of deep learning models. However, automated detection models currently fall short of giving an inspector an understanding of how the damage has progressed from one inspection to the next. The rate-of-change of the damage is a critical piece of information used by engineers to determine appropriate maintenance and rehabilitation actions to prevent structural failures. We propose a simple methodology for registering two bridge inspection videos or still images, collected at different stages of deterioration, so that trained model predictions may be directly measured and damage progression compared. The changes may be documented and presented to the inspector so that they may quickly evaluate key interest regions in the inspection video or image. Three approaches referred to as rigid, deformable, and hybrid image registration methods were experimentally tested and evaluated based on their ability to preserve the geometric characteristics of the referenced image. It was found in all experiments that the rigid, homography-based transformations performed the best for this application over a state-of-the-art deformable registration method, RANSAC-Flow.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3