A comparison of learning-based approaches for the corrosion detection on barrels in industrial applications

Author:

Haitz Dennis1,Hübner Patrick1,Ulrich Markus1,Jutzi Boris1

Affiliation:

1. Institute for Photogrammetry and Remote Sensing , Karlsruhe Institute of Technology , 76131 Karlsruhe , Germany

Abstract

Abstract Machine-learning-based (ML) segmentation in the image domain can be utilized for the detection of corrosion on the surface of industrial objects. This research provides a comparison of techniques using convolutional neural networks (CNNs) on the one hand, and random forest (RF) classifiers within RGB and HSV feature spaces on the other hand. CNN-based approaches usually need a large amount of data for training in order for the network to converge and generalize well on new data. Due to the low amount of data provided, we apply a set of methods to increase the generalization ability of the model. These methods can be categorized into data augmentation, selection of larger and smaller models and pretraining strategies like self supervised learning (SSL). The RF classifiers on the other hand are trained per pixel, so that the amount of data is determined by the image size. The object to be tested is a barrel made of metal, from which the image of the coat is used as the training data, and the image of the bottom as test data. We found that a RF classifier in the RGB feature space outperforms the CNNs by seven percentage points regarding the f 1-score of the corrosion class.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference39 articles.

1. C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms and Applications, 2nd ed. Weinheim, Germany, Wiley-VCH Verlag, 2018.

2. L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001. https://doi.org/10.1023/a:1010933404324.

3. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

4. S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on International Conference on Machine Learning – Volume 37, ICML’15, JMLR.org, 2015, pp. 448–456.

5. M. Heizmann, A. Braun, M. Glitzner, et al.., “Implementing machine learning: chances and challenges,” Automatisierungstechnik, vol. 70, no. 1, pp. 90–101, 2022. https://doi.org/10.1515/auto-2021-0149.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Video Analytics using Deep Learning in Cloud Services to Detect Corrosion - A Comprehensive Survey;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3