Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges

Author:

Reagan Daniel1,Sabato Alessandro1,Niezrecki Christopher1

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA, USA

Abstract

Quantifying the condition of aging structures is important to verify structural integrity and long-term reliability. Structural health monitoring plays a key role in the prevention of catastrophic failure, in improving the safety of infrastructure, and in reducing the downtime and costs associated with their maintenance. Bridges are typically designed to have a lifespan on order of 50 years; therefore, bridge monitoring is important since many of them are near to or have already exceeded their design life. Conventional sensors and examination techniques such as accelerometers and strain gages produce results at only a discrete number of points. Visual inspection only provides qualitative information and is subject to human variability and inconsistencies between inspectors. Moreover, both approaches are labor intensive and time-consuming. In recent years, three-dimensional digital image correlation systems have proven their efficiency in being able to provide accurate quantitative information of structural deformations, full-field strain, and geometry profiles of large-scale structures. At the same time, unmanned aerial vehicles have emerged as valuable tools for remotely performing measurements in places, which are either difficult or dangerous to access. With regard to bridge inspection, unmanned aerial vehicles have the capability to expedite the measurement process, offer increased accessibility, and reduce interference with the structures’ functionality. In this study, a novel approach that combines the use of an unmanned aerial vehicle and three-dimensional digital image correlation is developed to perform non-contact, optically based measurements to monitor the health of bridges. Extensive laboratory tests and a long-term monitoring campaign on two in-service concrete bridges demonstrated the accuracy of this system in detecting structural changes. Results show that this system is able to detect changes to the bridge geometry with an uncertainty on the order of 10−5 m while improving accessibility. The feasibility of the approach, best practices, and lessons learned is presented.

Funder

U.S. Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference61 articles.

1. Analysis of Recent Bridge Failures in the United States

2. Sharma S, Mohan SB. Status of bridge failures in the United States (1800–2009). Report, Transportation Research Board, Washington, DC, February 2011.

3. Analysis of Events in Recent Structural Failures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3