Period-refined CYCBD using time synchronous averaging for the feature extraction of bearing fault under heavy noise

Author:

Miao Yonghao1ORCID,Shi Huifang1,Li Chenhui1,Hua Jiadong1ORCID,Lin Jing1

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing, China

Abstract

Deconvolution methods have been widely used in machinery fault diagnosis. However, their application would be confined due to the heavy noise and complex interference since the fault feature in the measured signal becomes rather weak. Time synchronous averaging (TSA) can enhance the periodic components and suppress the others by the comb filter function. And in the iteration process of the deconvolution methods, the filtered signal after each iteration can be further processed using TSA, and the time delay with maximum Gini index value is refined as the iterative period for the next iteration. Benefitting from these advantages, a period-refined maximum second-order cyclostationarity blind deconvolution (PRCYCBD) using TSA is proposed for the weak fault detection of rolling element bearings (REBs) in this paper. Firstly, without any prior knowledge, the proposed method which can estimate the period more accurately is more suitable for the weak fault detection of REBs, especially incipient fault. Secondly, TSA is firstly applied to estimate the iterative period rather than just depending on the Signal Noise Ratio (SNR) of the filtered signal in the iterative process . Furthermore, the new improvement frame can be expanded to other deconvolution methods using iterative algorithms, especially under heavy noise. Finally, a simulation with a slight bearing fault as well as two real experimental data including the vibration signal with the wind turbine bearing fault and the acoustical signal with the locomotive wheel bearing fault is used to verify the superiority of the proposed PRCYCBD compared with the traditional minimum entropy deconvolution and the traditional autocorrelation-improved cyclostationarity blind deconvolution.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3