Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition

Author:

Wang Lijing1,Li Hongjiang1,Xi Tao2,Wei Shichun1ORCID

Affiliation:

1. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China

2. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China

Abstract

Due to the difficulty in dealing with non-stationary and nonlinear vibration signals using the single decomposition method, it is difficult to extract weak fault features from complex noise; therefore, this paper proposes a fault feature extraction method for rolling bearings based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods. CEEMDAN was used to decompose the signal, and the signal was then screened and reconstructed according to the component envelope kurtosis. Based on the kurtosis of the maximum envelope spectrum as the fitness function, the sparrow search algorithm (SSA) was used to perform adaptive parameter optimization for VMD, which decomposed the reconstructed signal into several IMF components. According to the kurtosis value of the envelope spectrum, the optimal component was selected for an envelope demodulation analysis to realize fault feature extraction for rolling bearings. Finally, by using open data sets and experimental data, the accuracy of envelope kurtosis and envelope spectrum kurtosis as a component selection index was verified, and the superiority of the proposed feature extraction method for rolling bearings was confirmed by comparing it with other methods.

Funder

the Natural Science Foundation of Tianjin

Tianjin Chengjian University Postgraduate Education Reform

Tianjin Research Innovation Project for Postgraduate Students

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3