An optimized variational mode extraction method for rolling bearing fault diagnosis

Author:

Pang Bin12ORCID,Nazari Mojtaba3,Sun Zhenduo12,Li Jiaying12,Tang Guiji4

Affiliation:

1. National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China

2. College of Quality and Technical Supervision, Hebei University, Baoding, China

3. Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

4. Department of Mechanical Engineering, North China Electrical University, Baoding, China

Abstract

The fault feature signal of rolling bearing can be characterized as the narrow-band signal with a specific resonance frequency. Therefore, resonance demodulation analysis is a powerful damage detection technique of bearings. In addition to the fault feature signal, the measured vibration signals carry various interference components, and these interference components become a serious obstacle of fault feature extraction. Variational mode extraction is a novel signal analysis method designed to retrieve a specific signal component from the composite signal. Variational mode extraction is founded on a similar basis as variational mode decomposition, while it shows better accuracy and higher efficiency compared with variational mode decomposition. In this study, variational mode extraction is introduced to the resonance demodulation analysis of bearing fault. As the results of variational mode extraction analysis are greatly influenced by the choice of two parameters, that is, the balancing factor α and the initial guess of center frequency ωd, an optimized variational mode extraction method is further developed. First, a new fault information evaluation index for measuring the richness of fault characteristics of the signal, termed ensemble impulsiveness and cyclostationarity, is formulated. Second, the ensemble impulsiveness and cyclostationarity is used as the fitness function of particle swarm optimization to automatically determine the optimal values of α and ωd. Finally, the validity of optimized variational mode extraction method is verified by simulated and experimental analysis, and the superiority of optimized variational mode extraction method is highlighted through comparison with two other advanced resonance demodulation analysis approaches, that is, the improved kurtogram and infogram. The analysis results indicate that optimized variational mode extraction method has a powerful capability of resonance demodulation analysis.

Funder

Hebei University high-level talents research start project

Science and Technology Project of Hebei Education Department

Natural Science Foundation of Hebei Province

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3