An Enhanced Modeling Framework for Bearing Fault Simulation and Machine Learning-Based Identification With Bayesian-Optimized Hyperparameter Tuning

Author:

Ortiz Ricardo12,Miranda-Chiquito Piedad34,Encalada-Davila Angel34,Marquez Luis E.55,Tutiven Christian67,Chatzi Eleni8,Silva Christian E.910

Affiliation:

1. SUNY Korea School of Mechanical Engineering, , Incheong 119-2 , South Korea

2. The State University of New York (SUNY - Korea) School of Mechanical Engineering, , Incheong 119-2 , South Korea

3. Escuela Superior Politecnica del Litoral Facultad de Ingenieria Mecanica y Ciencias de la Produccion, , Campus G. Galindo, Km 30.5 Via Perimetral, Guayaquil 090103 , Ecuador

4. Escuela Superior Politecnica del Litoral ESPOL Facultad de Ingenieria Mecanica y Ciencias de la Produccion, , Campus G. Galindo, Km 30.5 Via Perimetral, Guayaquil 090103 , Ecuador

5. University of Waterloo Department of Civil and Environmental Engineering, , Waterloo, ON, N2L 3G1 , Canada

6. Escuela Superior Politecnica del Litoral Facultad de Ing. Mecanica y Ciencias de la Produccion, , Campus G. Galindo, Km 30.5 Via Perimetral, Guayaquil 090103 , Ecuador

7. Escuela Superior Politecnica del Litoral ESPOL Facultad de Ing. Mecanica y Ciencias de la Produccion, , Campus G. Galindo, Km 30.5 Via Perimetral, Guayaquil 090103 , Ecuador

8. Environmental and Geomatic Engineering Chair of Structural Mechanics and Monitoring, Department of Civil, , ETH-Zurich, Zurich ZH 8093 , Switzerland

9. Purdue University Research Scientist, School of Mechanical Engineering, , West Lafayette, IN 47907 ;

10. Escuela Superior Politecnica del Litoral ESPOL Visiting Professor, Facultad de Ing. Mecanica y Ciencias de la Produccion, , Campus G. Galindo, Km 30.5 Via Perimetral, Guayaquil 090103 , Ecuador

Abstract

Abstract Monitoring the condition of rotating machinery offers a salient tool for predictive maintenance of rolling elements subjected to continuous working loads, wear, fatigue, and degradation. In this study, an enhanced computational tool for bearing fault simulation and feature extraction is proposed. A subsequent identification scheme is realized, through Bayesian optimization of hyperparameters, including support vector classifier (SVC), gradient boosting (GBoost), random forest (RF), extreme gradient boosting (XBoost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). The proposed hyperparameter optimization technique stands out from traditional methods by offering a more informed and efficient pathway to optimal performance in predictive maintenance. By using Bayesian optimization for hyperparameter tuning of machine learning models, which has not been extensively explored in this field, our approach shows significant advancements. Typical instances of bearing faults like inner race, outer race, and ball faults are considered. The analysis relies on the extraction of statistical and engineering characteristics from the collected response signals, including kurtosis, root mean square, peak, and ridge factor. Highly influential variables are highlighted on the basis of feature selection and importance algorithms, allowing bearing fault classification. We demonstrate that SVC and LightGBM produce over 97% of accuracy at low computational cost. This approach constitutes a robust and scalable framework for similar applications in engineering diagnostics.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3