Research on power coupling characteristics and acceleration strategy of electro-hydrostatic hydraulic hybrid power system

Author:

Liu Huanlong12,Li Dafa12ORCID,Chen Guanpeng12,Xie Chixin12,Wang Jiawei12,Feng Lei12

Affiliation:

1. Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, Chengdu, People’s Republic of China

2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China

Abstract

Aiming at the adverse effect of the peak power of the electric motor of the battery-powered rail vehicles on the battery life and the driving range when starting or accelerating, a new type of electro-hydrostatic hydraulic hybrid powertrain is designed. This article proposes a novel power form that assists the vehicle to start or accelerate through two power coupling methods: torque coupling circuit and flow rate coupling circuit which have good power performance and energy-saving performance. A mathematical model for power coupling of hybrid power system is constructed, and the effects of key parameters of the system and different power coupling ratios on electric power consumption and power coupling characteristics are studied. Based on the simulation and test platform, the power coupling characteristics of the electro-hydrostatic hydraulic hybrid powertrain are simulated and experimentally researched. The results show that compared with the traditional electro-hydrostatic series system, the novel electro-hydrostatic hydraulic hybrid powertrain can effectively avoid the impact of electric motor power and reduce the power consumption. Based on the characteristics of power coupling, the acceleration strategy of minimum peak power is studied to control the key components of the power coupling process. Simulation and experimental results show that under the control of the new acceleration strategy, the electro-hydrostatic hydraulic hybrid powertrain has good electro-hydraulic power coupling characteristics. The electric power of the power system is greatly reduced during acceleration, which has better energy-saving characteristics and value for engineering applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3