Layout analysis of compressed air and hydraulic energy storage systems for vehicles

Author:

Yi Tong12ORCID,Jin Chun1,Hong Jichao12,Liu Yanbo3

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China

2. Shunde Graduate School of University of Science and Technology Beijing, Foshan, China

3. Building Safety Appraisal Station of Haidian District, Beijing, China

Abstract

The compressed air energy storage system has a better energy density, while the widely used hydraulic one is superior in power performance. Therefore, they are suitable for different hybrid vehicles, which require a comparative study on the performances and vehicle applicability of the broad pressure energy storage system layouts. In this paper, an integrated mathematical model of four basic pressure layouts is presented for characteristic analysis and applicability discussion. Results show that the open volume layout achieves the best power performance with the flow specific power of 13.92 MJ/m3, thus it is suitable for heavy hybrid trucks and mobile machinery. The open mass layout achieves the best energy performance with the energy density of 124.35 MJ/m3, which can be used in light new energy passenger vehicles. And the performance of the closed volume layout is close to the open volume layout with the flow specific power of 9.78 MJ/m3, so it could be applied to middle and light hybrid trucks. This research provides a basis for the hybrid method of pressure energy storage system layouts for vehicles, and could be applied in the design and research of non-electric hybrid vehicles in the near future.

Funder

Shunde Graduate School of University of Science and Technology Beijing

Ministry of Science and Technology of the People’s Republic of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3