Simulation model of an off-road four-wheel-driven electric vehicle

Author:

Miroslaw Tomasz1,Szlagowski Jan1,Zawadzki Adam1ORCID,Zebrowski Zbigniew1

Affiliation:

1. Faculty of Automotive and Construction Machinery Engineering, Politechnika Warszawska, Warsaw, Poland

Abstract

Electric vehicle gives much more advantages than only less air polluting or less noisy mobility. The current technology enables engineers to better control the electric motor than internal combustion engine. Electronic components like transistors, which can be switched on and off almost anytime, help to control the motor current and indirectly the torque and the speed. The progress in power electronics and motor construction opens new possibilities in vehicle construction and control. The process of wheel rolling can be better controlled which is very important especially on deformed surface of a road. The movement resistance can be reduced by smart power distribution between front and rear wheels in 4 × 4 drive vehicles, where front wheels can compact the ground and rear wheels can move on the rigid road. To reach all the advantages, we need a better understanding of a processes occurring in electric vehicles’ systems, which consist of motors, gears, and wheels reacting with ground. Authors present the model of 4 × 4 drive vehicle focused on this last, but not least, problem—part of an electric vehicle model which is the wheel–ground cooperation. This subsystem decides about power flow from the motor to the wheel and about traction and movement efficiency. This problem is not new, but flexible driving manner going with electric drive makes these analyses more practical and can be used in off-road electric vehicles. The analyses were supported by model and simulation prepared with MATLAB/Simulink software. In conclusion, the comparison of various drive properties and possibilities is presented and recommendations for further development are suggested.

Funder

Plus MOBY and Free Moby EU projects

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Reference20 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing the Fuel Economy of Hybrid Electric Vehicle for Different Road and Traffic Conditions;2023 10th International Conference on Signal Processing and Integrated Networks (SPIN);2023-03-23

2. Mode Switching Frequency of Electrohydraulic-Power-Coupled Electric Vehicles with Different Delay Control Times;Electronics;2022-04-20

3. The Impact of Road Irregularities on the Motion of a Motor Vehicle during Acceleration;Communications - Scientific letters of the University of Zilina;2022-04-01

4. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy;Sustainability;2021-06-30

5. Research on power coupling characteristics and acceleration strategy of electro-hydrostatic hydraulic hybrid power system;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2021-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3