Author:
Liu Shuo,Zhang Hongxin,Yang Jian
Abstract
The variability of vehicle operating conditions and the multiplicity of coupler dynamics inevitably increase the frequency and complexity of cooperative power control. In this study, a novel electromechanical–hydraulic-power-coupled electric vehicle is developed and investigated. This vehicle integrates a conventional electric motor with a hydraulic pump/motor to interconvert electrical, mechanical, and hydraulic energies, while a rule-based dynamic optimal energy management strategy is designed to achieve dynamic switching of operating modes according to the operating conditions. Thus, the power-switching sensitivity is reduced by adding a delay determination link to the Stateflow. Results show that the addition of the delay link has a small effect on classical road conditions and significant suppression of road conditions with high-power-switching frequency. Therefore, the method proposed in this paper improves the energy efficiency, stability, and economic performance of electrohydraulic-power-coupled electric vehicles, which will hopefully provide a good reference for the development of electrohydraulic vehicles.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献