Mode Switching Frequency of Electrohydraulic-Power-Coupled Electric Vehicles with Different Delay Control Times

Author:

Liu Shuo,Zhang Hongxin,Yang Jian

Abstract

The variability of vehicle operating conditions and the multiplicity of coupler dynamics inevitably increase the frequency and complexity of cooperative power control. In this study, a novel electromechanical–hydraulic-power-coupled electric vehicle is developed and investigated. This vehicle integrates a conventional electric motor with a hydraulic pump/motor to interconvert electrical, mechanical, and hydraulic energies, while a rule-based dynamic optimal energy management strategy is designed to achieve dynamic switching of operating modes according to the operating conditions. Thus, the power-switching sensitivity is reduced by adding a delay determination link to the Stateflow. Results show that the addition of the delay link has a small effect on classical road conditions and significant suppression of road conditions with high-power-switching frequency. Therefore, the method proposed in this paper improves the energy efficiency, stability, and economic performance of electrohydraulic-power-coupled electric vehicles, which will hopefully provide a good reference for the development of electrohydraulic vehicles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3